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Abstract 

Gravimetric models of the geoid over Western Australia have been constructed using two 

adapted forms of Stokes's integral; one uses the unmodified Stokes kernel and the other uses a 

deterministically modified kernel. These solutions use a combination of the complete expansion of 

the EGM96 global geopotential model with Australian gravity and terrain data. The resulting 

combined solutions for the geoid are compared with the control given by Global Positioning System 

(GPS) and Australian Height Datum heights at 63 points over Western Australia. The improved fit 

of the model that uses a modification to Stokes's kernel indicates that this approach is more 

appropriate for gravimetric geoid computations over Western Australia. 

Introduction 

The geoid is the equipotential surface of the Earth's 

gravity field, which corresponds most closely with mean 

sea-level (ignoring oceanographic effects) and undulates 

with respect to an oblate ellipsoidal model of the figure 

of the Earth. In 1849, GG Stokes published a solution to 

the geodetic boundary-value problem, which requires a 

global integration of surface gravity data over the Earth 

to compute the separation (N) between the geoid and 

reference ellipsoid (Stokes 1849). However, the 

incomplete global coverage and availability of accurate 

gravity measurements has precluded an exact 

determination of the geoid using Stokes's formula. 

Instead, an approximate solution is used in practice, 

where only gravity data in and around the computation 

area are used. This approach is also attractive because of 

the increase in computational efficiency that is offered by 

working with a smaller integration area. 

In 1958, MS Molodensky (cited in Molodensky et al. 

1962) proposed a modification to Stokes's formula to 

reduce the truncation error that results when gravity data 

are used over a limited area. However, Molodensky's 

modification did not receive a great deal of attention at 

that time because of the contemporaneous availability of 

low-frequency global gravity field information, derived 

from the analysis of the orbits of artificial Earth satellites. 

These global geopotential models are expressed in terms 

of fully normalised spherical harmonic functions and are 

now routinely used in conjunction with terrestrial gravity 

data via a truncated form of Stokes's integral (e.g. Vincent 

& Marsh 1973; Sideris & She 1995). This combined 

approach reduces the truncation error because its series 

expansion begins at a higher degree, where the truncation 

coefficients are smaller in magnitude (assuming that the 

global geopotential model is an exact fit to the low-degree 

terrestrial gravity field). Another advantage of this 

combined solution for the geoid is that it reduces the 
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impact of the spherical approximation inherent to the 

derivation of Stokes's integral (e.g. Heiskanen & Moritz 

1967), the reason being that most of the geoid's power is 

contained in the low frequencies. 

This paper will briefly review the approaches cur¬ 

rently used in regional gravimetric geoid computations 

and presents a compromise approach based on a high- 

degree global geopotential model and a low-degree 

modified Stokes kernel (Featherstone et al. 1998). An em¬ 

pirical comparison between gravimetric geoid models 

computed for Western Australia using the unmodified 

Stokes kernel and the compromise approach will be made 

with 63 discrete geoid heights. From these comparisons, 

it will be concluded that the compromise approach is 

more appropriate for gravimetric geoid computations in 

Western Australia. 

The generalised Stokes scheme 

A formal representation of the combination of a global 

geopotential model with terrestrial gravity data has been 

proposed by Vanteek & Sjoberg (1991), which they refer 

to as the generalised Stokes scheme for geoid computa¬ 

tion. Importantly, this satisfies a solution to the geodetic 

boundary-value problem when formulated for a higher 

than second-degree reference model of the figure of the 

Earth (Martinec & Varucek, 1996). In this scheme, the low- 

frequency geoid undulations generated by a global 

geopotential model (NM) are extended into the high fre¬ 

quencies by a global integration of complementary high- 

frequency, terrestrial gravity anomalies (Ag**) using 

r 2tt /*7T 

N = Nm 4- k / / SM(cosip) /\gM s'm ip dip da (1) 
Jo Jo 

where k = R/4^y, R is the spherical Earth radius, y is 

normal gravity evaluated on the surface of the geocentric 

reference ellipsoid as required by Bruns's formula (e.g. 

Heiskanen & Moritz 1967), y/ and a are the coordinates of 

spherical distance and azimuth angle about the 
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computation point, respectively, and SM(cos y/) is the 

spheroidal form of Stokes's integration kernel, which is 

implicit to the generalised scheme and has the series 

expansion 

SM (cosip) = jP Pn(cosiP) (2) 

n=M-fl 

where Pw(cos \\t) is the nth degree Legendre polynomial. 

In Eq (1), the low-frequency component of the geoid 

(Nm) is computed from the fully normalised spherical 

harmonic coefficients that define the global geopotential 

model according to 

Nm = ~~~Y (“) ^ C nm zos m\ + Snms\r\TTi\)P^ (cos 6) 

n=2 m=0 

(3) 

The corresponding high-frequency gravity anomalies 

(AgM) are evaluated by subtracting the same spherical 

harmonic degrees of the same global geopotential model 

from the terrestrial gravity anomalies (Ag) according to 

geopotential coefficients, both avoids the correlations and 

reduces the leakage of terrestrial gravity anomaly errors. 

Reduction of the Approximation Error 

The generalised Stokes scheme 

The generalised Stokes scheme (Eq 1) remains subject 

to a truncation error when high-frequency terrestrial 

gravity anomalies are used over a limited area. 

Accordingly, there is an adjustment of Eq (1) that 

involves limiting the integration domain to a spherical 

cap of radius y/Q (0 < y/Q< n) about each geoid computation 

point, which yields the approximation 

N~Ni — Nm + k SM(cos VO AgM 

with a corresponding truncation error of 

sin ip dip da 

(5) 

SM(cosip) AgM sin ip dip da (6) 

GM M n n 
AyM = A g- (n - 1) ^(<5CnmcosmA + S nm sin m\)P^ (cos 9) 

n=2 m=0 

(4) 

In Eqs (3) and (4), GMe is the product of the Newtonian 

gravitational constant and mass of the solid Earth, oceans 

and atmosphere, a is the equatorial radius of the reference 

ellipsoid, (r, 6, A) are the geocentric spherical polar 

coordinates of each computation point, 6C and S are 

the fully normalised geopotential coefficients of degree n 

and order m, which have been reduced by the even zonal 

harmonics of the reference ellipsoid, and Ptm(cos 0) are 

the fully normalised associated Legendre functions. It is 

assumed that the reference ellipsoid is geocentric and has 

the same mass, potential and rotation rate as the geoid, 

such that the zero and first degree harmonics are 

inadmissible (e.g. Heiskanen & Moritz 1967). 

The degree (M) of reference spheroid chosen for the 

generalised Stokes scheme can be driven by the 

maximum degree of global geopotential model available, 

which is usually Mm/u. = 360. However, there are more 

important considerations than simply taking the 

maximum degree of expansion available (e.g. 

Featherstone 1992). Firstly, the = 360 models are 

already combined solutions for the geoid because they 

are constructed from both satellite-derived and terrestrial 

gravity data. Therefore, the same terrestrial gravity data 

are usually used twice in Eq (1), which gives rise to 

unknown correlations between these data that are rarely 

accounted for or even acknowledged by some authors. 

Another consideration is the leakage of low-frequency 

errors from the terrestrial gravity anomalies into the 

combined solution for the geoid, which can be filtered by 

the spheroidal kernel due to the orthogonality of 

spherical harmonic functions over the sphere (e.g. 

Vanteek & Featherstone 1998). This is considered to be a 

desirable scenario because the low-frequency 

geopotential coefficients are currently the best source of 

this information, whereas terrestrial gravity data are 

subject to low-frequency errors. Therefore, choosing the 

degree of spheroid at, say, M = 20 in Eq (1), which is the 

limit of the reliable resolution of the satellite-derived 

such that N=Nl+SNv This truncation error can be 

expressed as a series expansion by 

oo 

6Ni = 2tt/c Y Qui'Po) Agn (7) 
n=M-f-1 

where the spheroidal truncation coefficients 

Qn(JlJo)= f SM(cosip)Pn(cos ip) sin ip dip (8) 

J'l’o 

can be evaluated using the algorithms of Paul (1973). The 

rcth degree surface spherical harmonic of the gravity 

anomaly can be evaluated for each n up to the maximum 

degree (M^) of the geopotential model using 

Agn = —— (-) (n—1) y>CwmcosmA + 5nmsinmAjP^cosfl) 

m=0 

(9) 
As such, the truncation error in Eq (7) reduces to 

oo 

5NX = 2hk Y, QnWo) &9n (10) 
n=Mmai + l 

However, if AgM * 0 (2 < n < M), which is true if the 

global geopotential model is not an exact fit to the low- 

frequency terrestrial gravity anomalies, Eq (10) no longer 

holds and there is a leakage of any low-frequency gravity 

errors into the geoid solution when the integration is 

performed over a limited area (Vanfcek & Featherstone 

1998). This is a direct consequence of the approximation 

of the generalised Stokes integral, which introduces the 

non-zero truncation coefficients in the region 2 < n < M 

because the orthogonality of spherical harmonics over the 

sphere breaks down under the approximation in Eq (5). 

Since Agrt only depend on the physical properties of the 

Earth, it becomes necessary to seek a modification to the 

integration kernel that reduces the magnitude of the 

truncation coefficients and hence the truncation error. 

Ideally, this modification should reduce the truncation 

error as well as adapting the kernel to behave as a 

(partial) high-pass filter and thus reduce the leakage of 

any low-frequency terrestrial gravity data errors into the 

geoid (Vanfcek & Featherstone 1998). 
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The remove-compute-restore scheme 

The remove-compute-restore technique (e.g. Torge 

1991) has almost become a standard approach in regional 

combined solutions for the geoid. However, most users 

of this approach make no attempt to modify the 

integration kernel and thus (further) reduce the 

truncation error or adapt its filtering properties. Instead, 

this scheme uses the unmodified kernel as originally 

introduced by Stokes (e.g. Sideris & She 1995; Smith & 

Milbert 1999). The remove-compute-restore approach 

also generally uses the maximum available degree of the 

global geopotential model (M^), which gives rise to the 

approximated data combination 

A r27T rip o 

N ~ N2 = ^Mmax + K / / S(cos ip) AgMmax sin ip dip da 
Jo Jo 

(11) 

where the terms NMmax and AgMrm2* are computed from the 

maximum available degree and order of a global 

geopotential model (Eqs. 3 and 4), and the unmodified 

Stokes kernel is given by 

°° 2n H- 1 
S (cos ip) = — Pn (cos Tp) (12) 

n=2 

In this combined solution for the geoid, the truncation 

error for degrees greater than Mmax has to be neglected 

because it cannot be computed since the complete 

expansion of the global geopotential model has already 

been used. This also makes it subject to the correlation of 

errors between the global geopotential model and 

terrestrial gravity data used in the regional geoid 

solution. Moreover, no other attempt has been made to 

reduce the truncation error or adapt the filtering 

properties of the integration kernel. Admittedly, the 

truncation error will reduced a great deal if the global 

geopotential model is a good fit to the terrestrial gravity 

anomalies in the area of interest (i.e. if Ag** = 0 in the 

region 2 < n < M^). However, the penalty of taking this 

approach is that any errors in the terrestrial gravity 

anomalies to propagate unattenuated into the combined 

solution for the geoid (Vanteek & Featherstone 1998). It 

must also be acknowledged that, despite these 

restrictions, the remove-compute-restore technique has 

delivered quite reasonable results (e.g. Sideris & She 1995; 

Smith & Milbert 1999). However, the question of whether 

a modified integration kernel in the generalised Stokes 

scheme will deliver even better results remains, and thus 

forms the primary aim of this investigation. 

Integration kernel modifications 

As argued above, it remains preferable to apply a 

modification to the approximated form of the generalised 

Stokes's integral (Eq 5) and the remove-compute-restore 

approach (Eq 11) so as to further reduce the associated 

truncation error. Since Molodensky's pioneering work, 

several other authors have proposed modifications to 

Stokes's (1849) integral. These have been based on 

different criteria and can be broadly classified as 

deterministic modifications (e.g. Molodensky et al. 1962; 

Wong & Gore 1969; Meissl 1971; Heck & Griininger 1987; 

Vanfcek & Kleusberg 1987; Vanfcek & Sjoberg 1991; 

Featherstone et al. 1998) and stochastic modifications (e.g. 

Wenzel 1982; Sjoberg 1991; Vanfcek & Sjoberg 1991). The 

stochastic modifications, whilst offering an optimal 

combination of the twro data types together with a 

minimisation of the truncation error (in a least-squares 

sense), require reliable variance estimates of the data. 

However, the error characteristics of the terrestrial 

gravity data over Western Australia and over most other 

parts of the world are currently unknown, which renders 

the stochastic modifications of limited practical use. 

Therefore, the deterministic kernel modifications will 

have to be relied upon in the interim. 

The deterministic kernel modifications can be further 

divided into two broad categories; modifications that 

reduce the upper bound of the truncation error according 

to some prescribed norm, and modifications that improve 

the rate of convergence of the series expansion of the 

truncation error. The modification proposed by 

Featherstone et al. (1998) uses a combination of these, 

where the rate of convergence of the series expansion of 

an already-reduced truncation error by the L2 norm 

(Vanteek & Kleusberg 1987) is accelerated from 0(tv}) to 

0(n'2) through the approach proposed by Meissl (1971). 

This can be achieved either by setting the kernel to zero 

at the truncation radius through subtraction, or by 

choosing the truncation radius such that it coincides with 

a zero point of the kernel. 

The Featherstone et al. (1998) modification is given by 

$L (cos^) = SM (cosip) - Sm(costPq) - tk{ipo) [Pk(cosip) - Pk(cosTpo)} 

k=2 (13) 

where the tk( y/Q) modification coefficients are computed 

from the solution of the following set of L-l linear 

equations, once the truncation radius (\j/Q) has been 

chosen 

l ^ 2h _i_ i 

—O-Znk(lpo) = Qntyo) (14) 

k=2 

where the coefficients QMri(y/0) are given by Eq (8), and 

enk(ipo)= / Pn(cosTp)Pk(cosTp)sinTpdTp (15) 
J'P o 

which can be evaluated using the recursive algorithms of 

Paul (1973). The degree of this kernel modification (L) 

can be chosen to be greater than, equal to or less than the 

degree of the reference spheroid (M) embedded in the 

generalised Stokes formula (Eq 1). If L > M, additional 

terms arise due to this disparate combination and should 

be computed or their omission acknowledged. 

A compromise of the combined solution 

The combined solution for the geoid considered in this 

study attempts to reach a compromise of the above two 

schemes, based on considerations of the data availability, 

their expected reliability, and a reduction of the trunca¬ 

tion error through the above deterministic modification 

of the generalised Stokes kernel. This compromise approach 

was used to compute the recent Australian gravimetric 

geoid model, AUSGeoid98 (Johnston & Featherstone 

1998). Mathematically, this is formalised as 

r2lT rrpo 

N ~ N3 = NMr,iaz +k / Si (cosTp) AgM'nax sin Tp dip da 
Jo Jo 

(16) 
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where all terms are as defined earlier. Equation (16) 

utilises the maximum available expansion (Mmflx) of the 

global geopotential model in conjunction with a low- 

degree (L) of deterministic kernel modification. This 

approach aims at reducing the truncation error so that it 

can be safely ignored, whilst relying more on the low- 

degree satellite solution by filtering a proportion of the 

low-frequency errors from the terrestrial gravity data (cf. 

Varncek & Featherstone 1998). However, this choice is 

also driven by some practical considerations. Empirical 

studies by Featherstone (1992) indicate that the modified 

kernels become numerically unstable for large L and 

small y/0, which enforces a low degree of kernel 

modification when a small integration radius is used. For 

simplicity, the degree of kernel modification is chosen 

equal to the degree of spheroid used in the generalised 

scheme (i.e. L = M = 20). The integration radius was 

chosen to be i//0=l°, since this value was empirically 

selected for AUSGeoid98 (Johnston & Featherstone 1998). 

It is argued that this compromise approach offers a 

geoid solution that is superior to the application of the 

remove-compute-restore technique with an unmodified 

kernel because of its further reduction of the truncation 

error and adaption of the filtering properties of the 

kernel. However, it is also important to acknowledge the 

deficiencies of this attempted compromise, which are the 

use of the high-frequencies in the global geopotential 

model (which can contain 80% noise; e.g. Lemoine et al. 

1998) and the correlations between the terrestrial gravity 

data in the region 20 < n < M^. Therefore, empirical tests 

are used in Western Australia to determine whether the 

use of a deterministically modified integration kernel is 

more appropriate than using the unmodified kernel. 

Empirical tests in Western Australia 

The tests that follow compare four combined solutions 

for the geoid, computed using differing parameters in 

Eqs (11) and (16), with discrete geoid heights at 63 points 

across Western Australia. These control data are derived 

from Global Positioning System (GPS) measurements at 

Australian Height Datum (AHD) benchmarks. The 

difference between a GPS-derived ellipsoidal height and 

geodetically levelled height with respect to mean sea 

level gives a discrete estimate of the separation between 

the geoid and reference ellipsoid. Assuming that there 

are no errors in these control data, the gravimetric geoid 

solution that delivers the best fit can be considered to be 

the most suitable for Western Australia. 

Data and its processing 

The EGM96 global geopotential model (Lemoine et al. 

1998), complete to A4 = 360, was used in this study. 

EGM96 is one of the most recent global geopotential 

models and was produced by the US National Imagery 

and Mapping Authority (NIMA), formerly the Defense 

Mapping Agency (DMA), and the US National 

Aeronautical and Space Administration's (NASA) 

Goddard Space Flight Center (GSFC). Kirby et al. (1998) 

compared EGM96 with Australian gravity data 

(described below) and discrete geoid heights provided by 

co-located GPS and AHD data (also described below). 

This showed that EGM96 provides a slightly better 

(though statistically not significant) representation of the 

Australian gravity field than its predecessors. 

The Australian Geological Survey Organisation's 

(AGSO) 1996 national gravity data release, being the most 

recent available to the author, has been used in the 

computations. As most of the AGSO gravity data were 

collected and reduced predominantly for geophysical 

exploration purposes, they are not necessarily suited to 

the requirements of gravimetric geoid computation. As 

such, they have been validated according to the 

procedures in Featherstone et al. (1997) and the gravity 

anomalies computed using the more stringent geodetic 

approaches (e.g. Featherstone & Dentith 1997). 

Deficiencies were also found in the mean free-air gravity 

anomalies computed on land, due to the gravity data 

collection strategies used by AGSO. The land gravity 

observations were typically made along roads and tracks 

in areas of rugged terrain, which usually follow valleys 

or areas of least height variation. A similar, though 

opposite, effect occurs in central Australia where most 

observations were performed using helicopter transport. 

These observations were often located on raised ground 

where convenient landing spots were identified. 

Specifically, the computed mean gravity anomaly does 

not truly represent the actual mean gravity anomaly of 

an area. As such, the computed gravimetric geoid is 

biased by these gravity observation techniques. To 

numerically counter this biasing effect, a digital elevation 

model (described below), which gives a better 

representation of the mean terrain height than the gravity 

observation elevations, was used to reconstruct more 

representative mean gravity anomalies (Featherstone & 

Kirby 2000). 

Satellite-altimeter-derived marine gravity anomalies 

were used offshore Australia to supplement AGSO's 

marine gravity data coverage. These gravity anomalies 

were computed from a combination of satellite-borne 

radar altimeter missions and supplied on a 2' by 2' 

geographical grid (Sandwell & Smith 1997). These data 

significantly improve the gravity data coverage offshore 

Australia and, as such, were expected to give an 

improved geoid solution in marine areas and on land 

areas close to the coast. However, errors thought to reside 

in the low-frequency altimeter-derived gravity anomalies 

adversely affect the gravimetric geoid near the coast, 

which was indicated by comparisons of the geoid 

solution with GPS and AHD data on land near the coast. 

The low-frequency errors in the satellite altimeter data 

are probably due to a combination of poorly-modelled 

near-shore sea-surface topography, tides and backscatter 

of altimeter returns from the land. Another explanation 

for this observed deficiency comes from the conversion 

of sea surface heights, which are the direct measurements 

taken by the altimeter, to gravity anomalies, then 

converting these gravity anomalies to geoid heights. At 

present, it is unknown how the errors, such as poorly- 

modelled sea-surface topography, propagate through 

these processes. Therefore, as an interim and practical 

solution, least squares collocation (e.g. Moritz 1980a) was 

used to 'drape' the altimeter gravity anomalies onto the 

AGSO marine gravity anomalies (Kirby & Forsberg 1998). 

This approach then improved the geoid solution on land 

near the coast, when compared with GPS and AHD data, 

over that achieved using only the AGSO marine gravity 
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data or simple averaging of the AGSO marine gravity 

data and the satellite-altimeter data. 

Gravimetric terrain corrections, based on the national 

9" by 9" digital elevation model (Carrol & Morse 1996), 

were evaluated using Moritz's (1968) formula via the fast 

Fourier transform or FFT (Kirby & Featherstone 1999). 

The FFT offers the only practical way to compute detailed 

terrain corrections on a continental scale, since prism 

integration at this scale could take several months to 

evaluate. It was found by Kirby & Featherstone (1999) 

that the terrain correction computations had to be 

performed using a 27" by 27" grid to avoid the instability 

in Moritz's terrain correction algorithm that occurs when 

using high-resolution digital terrain models close to the 

computation point (cf. Martinec et al. 1996). Associated 

with the gravimetric terrain correction are the primary 

and secondary indirect effects (e.g. Wichiencharoen 1982). 

The primary indirect effect accounts for the change in 

potential caused by the free-air gravity reduction and 

gravimetric terrain correction. The primary indirect effect 

was computed using the FFT on a 27" grid, which avoids 

the kernel instability and, moreover, is consistent with 

the terrain correction computations. The secondary 

indirect effect on gravity was computed by applying the 

free-air reduction over the geoid-compensated-geoid 

separation computed via the primary indirect effect. This 

resulted in an additional gravity term that was added to 

the gravity anomalies prior to geoid computation. 

A grid of residual gravity anomalies was computed 

from the AGSO gravity observations using the 

continuous curvature spline in tension algorithm (Smith 

& Wessel 1990; Wessel & Smith 1995). The term residual 

gravity anomalies is used to describe the terrain-corrected 

free-air gravity anomalies that have been reduced by the 

gravity anomalies implied by the complete = 360 

expansion of EGM96 (Eq 4). A regular grid of residual 

gravity anomalies is required for the residual geoid 

computations via the one-dimensional FFT technique. It 

is acknowledged that other gravity gridding techniques 

exist, such as least squares collocation (Moritz 1980a), but 

the continuous curvature spline in tension algorithm was 

readily available (Wessel & Smith 1995) and gives almost 

identical results in a considerably shorter computation 

time (Zhang 1997). For this study, a 2’ by 2' grid of gravity 

anomalies was generated over the region by -11° < (p < - 

37° and 110° < A< 131°, which covers the state of Western 

Australia. Table 1 summarises the statistical properties of 

the gravity anomalies and the residual gravity anomalies. 

The GRS80 reference ellipsoid (Moritz 1980b) has been 

used in all computations. Grey-scale images of the 

EGM96-implied gravity anomalies and residual gravity 

anomalies are shown in Figs 1 and 2, respectively. 

The statistical fit of the gravity anomalies implied by 

the EGM96 global geopotential model to the gravity field 

of Western Australia is poorer than that experienced in 

other parts of the world (cf Forsberg & Featherstone 

1998). This is probably due to the larger uncertainty in 

the terrestrial gravity anomalies, which is caused princi¬ 

pally by errors in the gravity station elevations (e.g. 

Featherstone et al. 1997). However, since a large propor¬ 

tion of these data has been used in the construction of the 

EGM96 global geopotential model, a more likely explana¬ 

tion is an inaccuracy in the mean gravity anomalies used 

112* 116* 120* 124* 128* 

112* 116* 120' 124* 128* 

Figure 1. The Mmax = 360 EGM96-implied gravity anomalies over 

Western Australia (units in mGal; Mercator's projection from the 

GRS80 ellipsoid). 

Figure 2. The residual gravity anomalies over Western Australia 

(units in mGal; Mercator's projection from the GRS80 ellipsoid). 
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Table 1 

Minimum, maximum, mean, standard deviation (SD) and root mean square (RMS) for the gravity 

anomalies over Western Australia (units in mGal). 

gravity anomalies Minimum Maximum Mean SD RMS 

terrain-corrected free-air 

residual 

131.085 

91.554 

-147.678 

-101.236 

-8.762 

0.009 

±29.110 

± 10.968 

± 30.400 

± 10.968 

for this model. Lemoine et al. (1998) describe the con¬ 

struction of the JGP95E 5' by 5' digital elevation model, 

where the Australian 5' by 5’ digital elevation model was 

used west of A = 140° and a National Imagery and Map¬ 

ping Agency (NIMA) digital elevation model was used 

east of A = 140°. The Australian 5' by 5' digital elevation 

model used by NIMA was probably that constructed at 

the Australian National University from the elevations 

associated with the gravity station elevations. 

Featherstone & Kirby (2000) show that this digital eleva¬ 

tion model is biased because the gravity observations 

do not accurately represent the topographic morphology 

(see earlier discussion). Therefore, more reliance should 

be placed on the terrestrial gravity anomalies described 

earlier, hence the use of a low-degree kernel modifica¬ 

tion. 

Geoid computation by the 1D-FFT technique 

In the mid 1980s, the fast Fourier transform (FFT) 

technique began to find wide-spread use in gravimetric 

geoid computation, because of its efficient evaluation of 

convolution integrals when compared to quadrature- 

based numerical integration. For many years, the planar, 

two-dimensional FFT was used (e.g. Schwarz et al. 1990). 

Strang van Hees (1990) then introduced the spherical, 

two-dimensional FFT. However, both of these FFT 

approaches are subject to approximation errors, the most 

notable of which is the simplification of Stokes's kernel. 

Forsberg & Sideris (1993) therefore proposed the 

spherical, multi-band FFT, which reduces the impact of 

the simplified kernel. Haagmans et al. (1993) then refined 

this approach to give the spherical, one-dimensional FFT, 

which requires no simplification of Stokes's kernel. For 

this reason, the 1D-FFT has been used in this 

investigation so that the exact kernels in Eqs (12) and (13) 

can be used efficiently and without the need for any 

simplification. 

Another consideration is that remove-compute-restore 

determinations of the geoid using the 1D-FFT often 

convolve the whole rectangular grid of gravity anomalies 

over a region with the spherical Stokes kernel (e.g. Sideris 

& She 1995; Smith & Milbert 1999). On the other hand, 

quadrature-based geoid determinations only use gravity 

anomalies over a spherical integration radius about each 

computation point. Therefore, each approach results in a 

different truncation error due to the neglect of the 

residual gravity anomalies in the (different shaped) 

remote zones outside each integration domain. Both of 

these implementations are tested in this study, where in 

Eq (11) the spherical integration radius is set to y/Q = n so 

as to use the whole gravity data rectangle, and a limited 

spherical cap is used to mimic quadrature-based 

numerical integration. 

In order to make the 1D-FFT approach closely mimic 

quadrature-based numerical integration over a spherical 

cap, the integration kernel is set to zero outside the 

truncation radius (y/Q = 1°) before transformation to the 

frequency domain. A further adaptation of this technique 

has been added to allow the lD-FFT-based evaluation of 

Eq (16), where the modified kernel (Eq 13) was 

implemented by evaluating it before transformation to 

the frequency domain (Featherstone & Sideris 1998). 

Comparisons with quadrature-based numerical 

integration software that uses spherical caps and 

deterministically modified integration kernels 

(Featherstone, 1992) were used to verify these adaptations 

of the 1D-FFT. 

In what follows, the gravimetric geoid heights from 

each approach have been evaluated using the 1D-FFT for 

(i) the remove-compute-restore technique with an 

unmodified kernel and residual gravity anomalies over 

whole data area y/Q = n, 

(ii) the remove-compute-restore technique with an 

unmodified Stokes's kernel and residual gravity 

anomalies over a limited spherical cap (y/Q = 1°), and 

(iii) the compromise approach in Eq (16) with a 

deterministically modified kernel and residual gravity 

anomalies over a limited spherical cap (% = 1°). 

In the latter case, the degree of spheroid associated 

with the generalised Stokes scheme is M = 20 and the 

degree of deterministic kernel modification is the same. 

Of course, a large number of permutations of these 

parameters is possible by varying the degree of global 

geopotential model (M), integration radius (\frQ), degree of 

kernel modification (L), and even the type of kernel 

modification (see section Integration Kernel 

Modifications, above). However, only the above three 

cases are studied for Western Australia because the 

remove-compute-restore technique is used in many other 

parts of the world (e.g. Sideris & She 1995; Smith and 

Milbert 1999), and the L = M = 20 modification for a cap 

radius of y/Q = 1° was used for AUSGeoid98 (Johnston & 

Featherstone 1998). 

All geoid computations were conducted on a 2’ by 2' 

grid over an area bound by -12° < (p < -36° and 112° < A < 

129°, which eliminates the edge effect associated with the 

one-degree integration radius (with the exception of the 

integration over the whole data area). It should be 

pointed out that this edge effect affects the whole 

computation area when the cap-radius is unlimited. 

Nevertheless, the geoid comparisons are conducted over 

the same area for the sake of consistency. 

Comparison of Geoid Results with GPS at AHD 

Benchmarks 

As is customary in almost all validations of 

gravimetric geoid models on land, the geoid results from 

this study were compared with Global Positioning 
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System (GPS) and geodetic levelling data to determine if 

any improvements are made when utilising a spherical 

integration cap and deterministically modified kernel. 

However, it must be pointed out this type of comparison 

is inevitably biased because the geodetic levelling data 

used in this investigation are based on the Australian 

Height Datum (AHD). The AHD is a normal orthometric 

height system based on estimates of mean sea level from 

30 tide gauges around Australia (Roelse et al. 1971). As 

such, it does not give an exact representation of the 

equipotential geoid (e.g. Featherstone 1998). Nevertheless, 

GPS and geodetic levelling data currently provide the 

only (partially) independent means with which to verify 

a gravimetric geoid model on land. Given that the 

primary geodetic application of a gravimetric geoid 

model is to transform GPS-derived ellipsoidal heights to 

the AHD, this type of analysis is also useful to ascertain 

the gravimetric geoid models' performance for this 

application. 

For each of the three cases investigated, the 

gravimetric geoid solution was bi-cubically interpolated 

from the 2' by 2' grid and statistically compared with 63 

discrete geoid heights. These were derived geometrically 

from the most precise GPS networks available in Western 

Australia (Morgan et al. 1996; Stewart et al. 1997) at points 

that are co-located with geodetically levelled heights of 

third-order, or better, on the AHD. Table 2 shows a 

statistical summary of the differences between the 63 

control geoid heights and the results from the Mmax=360 

expansion of EGM96 alone (Eq 3), the 1D-FFT 

implementations of Eq (11) with \j/Q = 7rand Ij/Q = 1°, and 

Eq (16) with \ffQ = 1°. The mean and root mean square 

(RMS) differences in Table 2 should not be relied upon to 

choose the most accurate geoid solution because any 

gravimetric determination of the geoid is deficient in 

scale (i.e. only the gravimetric geoid's precision can be 

estimated). This scale deficiency due to the imperfect 

knowledge of the mass of the Earth [cf the text 

immediately after Eqs (3) and (4)]. Accordingly, only the 

standard deviations of the fit of each gravimetric geoid 

model to the control data should be used to assess the 

performance in terms of precision of each model; the 

mean and RMS values are only included for the sake of 

completeness. 

The difference between the fit of each geoid model in 

Table 2 is not always significant in a statistical sense, 

when considering that the random error budget of the 

GPS data is -0.05 m (Morgan et al 1996; Stewart et al. 

1997) and distortions of the AHD from the geoid are of 

the order of 1 m (Roelse et al. 1971; Featherstone & 

Stewart 1998; Featherstone 1998). Despite these caveats, 

some useful inferences can be made from these results as 

follows. 

Firstly, the use of the whole gravity data area in the 

combined solution for the geoid (Eq 11 with y/Q = n) gives 

a result that is worse than using the EGM96 global 

geopotential model alone (Table 2). Whilst the use of the 

whole data area appears to be appropriate in other parts 

of the world (e.g. Sideris & She 1995; Smith & Milbert 

1999), a considerably worse result is achieved in Australia 

when using this approach (Table 2; Forsberg & 

Featherstone 1998; Johnston & Featherstone 1998). This is 

a slightly unexpected result, since including more data in 

the geoid solution should yield a better result. This is 

either due to noise in the Australian gravity anomalies, 

which been estimated to be approximately ± 2 mGal 

(Featherstone et al. 1997), or the theoretical basis of this 

approach is unsuitable for Australia. 

Next, from Table 2 there is an improvement over the 

results of using only the EGM96 global geopotential 

112' 116* 120' 124" 128' 

Figure 3. The gravimetric geoid over Western Australia, com¬ 
puted using Eq (16) with yrQ = 1° and S2020(cos y/); units in metres; 
Mercator's projection from the GRS80 ellipsoid. 

Table 2 

Minimum, maximum, mean, standard deviation (SD) and root mean square (RMS) for the absolute 
between the 63 control GPS-AHD heights and the gravimetric geoid heights computed from EGM96 
only, Eq (11) with y/Q = Trand y/Q = 1° and Eq (16) with y/Q = 1° (units in metres). 

Minimum Maximum Mean SD RMS 

= 360 expansion of EGM96 (Eq 3) 0.889 -0.328 0.148 ± 0.274 ±0.311 

Eq (11) with % = p and S(cos y/) 0.751 -0.776 -0.092 ± 0.362 ± 0.374 

Eq (11) with yfQ = 1° and S(cos y/) 0.625 -0.664 0.118 ± 0.249 ± 0.276 

Eq (11) with y/Q = 1° and S2020(cos y/) 0.761 -0.308 0.140 ± 0.223 ± 0.263 
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112° 116° 120° 124° 128° 

-12° 

-16° 

-20° 

-24° 

-28° 

-32° 

-36° 

Figure 4. The differences between the 63 GPS-AHD discrete 

geoid heights (circles) and the gravimetric geoid (Fig 3); units in 

metres; Mercator's projection from the GRS80 ellipsoid. 

model offered by the use of a limited integration radius 

in Eq (11). Importantly, there is a further improvement 

offered by using the deterministically modified 

integration kernel in Eq (16) for the same integration 

radius. Though inconclusive due to the perceived 

uncertainties in the control data, these results do indicate 

that the use of deterministically modified integration 

kernel is a preferable approach for geoid computations in 

Western Australia. This is bearing in mind that the 

principal application of the gravimetric geoid in Australia 

is to transform GPS-derived ellipsoidal heights to the 

AHD. Fig 3 shows a contour map of the gravimetric 

geoid model of Western Australia that has been 

computed using Eq (16) with yr0 = 1° and L = M = 20. 

Finally, it is informative to view the geographical dis¬ 

tribution of the discrepancies between the 63 GPS-AHD 

discrete geoid heights and the gravimetric geoid com¬ 

puted from the modified Stokes integral (Fig 4). There are 

systematic differences between the gravimetric geoid and 

the control data, where these features (highs, lows and 

slopes) are defined by more than one control point. Given 

the relatively small error budget of the GPS data (~ 0.05 

m), it becomes difficult to ascertain whether these sys¬ 

tematic differences are due to distortions in the AHD, the 

gravimetric geoid, or both. It is currently impossible to 

isolate the exact source, but following the arguments in 

Featherstone & Stewart (1998), it is more likely that these 

errors are due to distortions in the AHD. These are intro¬ 

duced because the AHD is constrained to mean sea level 

observed over two years at 30 tide gauges around Aus¬ 

tralia (Roelse et al. 1971) and thus does not necessarily 

represent an equipotential surface of the Earth's gravity 

field (Featherstone 1998). However, the possibility of sys¬ 

tematic errors in the gravimetric geoid cannot be ruled 

out as an explanation for these discrepancies. 

Conclusion 

From these gravimetric geoid results over Western 

Australia, it is clear that 1D-FFT geoid computations 

should use a spherical cap of limited extent instead of the 

whole gravity data grid. Small (though not statistically 

significant when considering the errors in the GPS and 

AHD data) improvements are also observed when a 

deterministically modified integration kernel is used over 

a spherical cap in the compromise approach to 

gravimetric geoid determination (Eq 16). This 

improvement is probably because the kernel modification 

reduces the truncation error so that its neglect has less 

impact on the solution and adapts the filtering properties 

of the kernel thereby reducing the effect of low-frequency 

terrestrial gravity anomaly errors. Therefore, it is 

recommended that limited integration caps and modified 

Stokes's kernels are used in spectral geoid determinations 

of Western Australia. 
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